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Abstract 
Planetary surface mobility has to date been limited to 

benign locations.  If rover systems could be developed for 
more challenging terrain, e.g., sloped and irregularly 
featured areas, then planetary science opportunities 
would be greatly expanded.  We have in the last several 
years carried out a related program of R&D that involves 
new concepts in reconfigurable mobility and on-board 
adaptive control of same in response to the sensed and 
changing environment.  Several prototype systems and 
their in-field demonstration have resulted, including a 
single "All Terrain Explorer" which significantly extends 
operability into steeply sloped sandy terrain, as well as a 
new "Cliff-bot" which achieves near vertical cliff-side 
operation via fully distributed sensing and control within 
a team of cooperative agents.  We overview these develop- 
ments, noting their potential for a broader class of robotic 
system applications. 
 

1. Introduction 
Autonomous mobility over rough and hard-to-access 

terrain is a topic of both technical and applications interest 
in robotics.  The technical challenges are considerable, as 
they span issues in mechanical design, sensing, planning, 
control, and underlying models and simulation of same. 
The potential applications are broad, one being rovers for 
the scientific exploration of solar system bodies (planets, 
moons, asteroids) with disparate surface characteristics 
and gravitation [17]. Terrestrial applications include off- 
road vehicles for military and search & rescue functions.   
In a general sense, terrain is classified as “rough” and /or 
“challenging” as characterized by its progressive rock 
density, its variable, unpredictable surface properties (e.g., 
sandy, frangible, soft-dust-penetrable, icy), and steepness.                 

We have organized our research around four related 
themes, and surveyed prior related work in refs. [6, 12]:   
1) physics-based mobility models for robust terrain tra- 
verse/interactions; 2) computationally-efficient, behavior- 
based control architectures that exploit these models;  3) 
rover designs having actively controlled, reconfigurable 
elements that improve agility/stability of traverse; and 4) 
extension of these concepts into networked and modular 
robotic systems that exploit collective estimation, distri- 
buted control, and coordinated multi-agent behaviors to 
perform tasks of larger, more complex scale.       

Terrainability and traversability of mobile robots must be 
considered in context of scale and design.  Our report here  

addresses wheeled vehicles; other options exist  including 
legged, tracked, modular-articulated, and less convention- 
al uni-and-multiwheeled inflatable systems.  Each have 
their respective strengths relative to particular domains 
and ranges of application—e.g., hard versus soft soil 
floatation properties, speed versus size, traversability 
relative to obstacle density and control complexity.  Rover 
scale relative to terrain roughness, obstacle frequency, and 
obstacle size distribution also sets design constraints and 
performance criteria.  E.g., smaller vehicles benefit from 
cube-square law effects (power, flotation), while larger 
vehicles finesse obstacles and rocky traverses by mechan- 
ical advantage.  In summary, planetary mobility is a set of 
design trades between mechanical complexity/robustness, 
mass/volume/power resources, and computationally prac- 
tical perception/control/planning that can detect, classify 
and mitigate obstacles and anomalies (as well as capture 
and maintain the necessarily accurate on-board, real-time 
model of vehicular state with respect to the surrounding 
terrain, examples being localization, pose, and wheel-soil 
interaction parameters).  Planetary rovers are often quite 
limited in mass/volume/power resources and to date are 
largely of conventional wheeled design (Cf., rocker-bogie 
mechanization of NASA/JPL’s MPF-Sojourner ’97 and 
MER/’03 vehicles, which have near optimal obstacle 
clearance for a six wheel form factor).   
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We outline a method for on-line estimation of terrain 
cohesion and internal friction angle using on-board rover 
sensors.  The algorithm estimates parameters of terrain 
the rover is currently traversing.  The algorithm relies on a 
simplified form of classical terramechanics equations, and 
uses a linear-least squares estimator to compute terrain 
parameters in real time.  The method is computationally 
efficient, and is thus suitable for implementation on a 
rover with limited on-board computing resources.   

2. Rover-Terrain Interactions 
In this section we overview our recent development of 

models for terrain interaction.  Terramechanics, while a 
long studied subject, appears to be a fairly new research 
topic in rover design, possibly due to rather wide-ranging 
surface characteristics, the non-linear underlying wheel 
interactions, and empirical testing requirements.  Better 
wheel-terrain interaction models—both their on-line iden- 
tification and predictive estimation—will enable power- 
efficient rover operation, fault diagnosis, and related 
contingency handling (wheel sinkage, vehicle slewing, 
etc.).  It will also lead to new scientific tools for inference 
of planetary surface analysis and characterization. 

 
2.2. Technical Approach 

A free-body diagram of a driven rigid wheel traveling 
through deformable terrain is shown in Figure 1.  
Nonlinear force balance equations can be written for the 
system in Figure 1, relating stresses at the wheel-terrain 
interface to externally applied force such as the wheel 
weight and torque [1].  A key insight of our approach is to 
approximate the nonlinear force equations by simplified 
linear forms.  The linearized force balance equations can 
be solved for the terrain parameters c and φ.  Details of 
this approach are presented in [7]. 

 
2.1. Problem Background and Statement 

Wheel-terrain interaction has been shown to play a 
critical role in rough-terrain vehicle mobility [1, 18].  
However, modeling and identification of such phenomena 
is often overlooked in robotic applications, possibly 
because methods for terrain parameter identification 
require costly and dedicated testing equipment.  For 
planetary rovers, it would be desirable to estimate terrain 
physical parameters on-line, since knowledge of a terrain 
region’s physical parameters would enable a rover to 
accurately predict its traversability and adapt its in situ 
control and planning strategy [5].  Finally, terrain param- 
eter estimation employs rovers in new ways for improved 
scientific understanding of planetary composition, per [8]. 

 

Many parameters are required to fully describe a 
terrain’s mechanical characteristics, including cohesion, 
internal friction angle, shear deformation modulus, 
pressure-sinkage moduli, etc.  Two key terrain parameters 
are cohesion, c, and internal friction angle, φ.  These 
parameters can be used to compute the maximum terrain 
shear strength, τmax, from Coulomb’s equation: 

φστ tanmaxmax += c                             (1) 

 (1) 
Inputs to this estimation method are the wheel load, 
torque, slip, and sinkage.  All of these quantities can be 
measured or estimated for a rover moving at slow speeds.  
The load can be computed from a quasi-static force 
analysis of the rover.  The torque can be estimated from 
the current input to the motor and an empirically- 
determined mapping from current to torque.  The wheel 
angular speed can be measured with a tachometer, and the 

where σmax is the maximum normal stress acting on a 
terrain region. Since soil failure occurs when the 
maximum shear strength is exceeded, knowledge of c and 
φ can be used to predict rover traversability.  Note that c 
and φ are also well-established scientific parameters for 
characterizing soils.  

 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 1: Rigid wheel on deformable terrain 



Figure 3b presents experimental results from an instru- 
mented wheel testbed developed at MIT.  Here the wheel 
is traveling through dried bentonite clay.  Again, it can be 
seen that c and φ quickly converge to near the measured 
values of c = 0.7 and φ =32.1. 

linear speed can be computed using IMU measurements.  
The wheel sinkage can be computed from vision-based 
techniques that have been recently developed at MIT, per 
Figure 2.   
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Figure 3 (b):  Experiment—estimation of cohesion 
(solid) and internal friction angle (dotted) 

Figure 2:  Vision-based estimate of wheel sinkage 
 

 . Results   
2.4. Current Directions of Research xtensive simulations and experiments have been 

formed to validate the terrain parameter estimation 
orithm.  Representative results are shown in Figure 3.   

Our continued investigation of rover-terrain inter- 
actions and related terramechanical modeling proceeds 
along two distinct directions:  nonparametric traversa- 
bility prediction, and “visual terrain association”.  In 
non-parametric traversability, the goal is to predict the 
immediate vehicular mobility properties by conducting a 
simple on-line “experiment”, such as quickly spinning a 
wheel.  Such an approach would not explicitly estimate 
terrain parameters; rather it would yield a rapid estimate 
of traversability.  In visual terrain association, our further 
goal is to use on-board processed visual cues so as to 
correlate previously sensed terrain with that next to be 
traversed.  Having this sort of capability would enable a 
rover to develop a terrain-based traversability map of its 
surroundings, which would be a valuable aid to higher 
level motion planning functions. 
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 ure 3 (a):  Simulation—estimation of cohesion (solid) 
and internal friction angle (dotted) 3. Traversal of Challenging, Steep Terrain 

igure 3a is a simulation of a single wheel traveling 
ough sandy terrain.  Sensor noise and wheel dynamics 
 included in the simulation.  It can be seen that the 
imated parameters c and φ quickly converge to the true 
ues of c = 2.0 and φ = 27.0.   

In this section we first describe a reconfigurable rover 
that adapts its kinematics pose and c. g. distribution for 
stable traverse over changing terrain slope up to 50 
degrees.  We then present a cooperative rover system for 
access of cliffs. 



3.1. Problem Background and Statement Future rover solutions to “high risk access” will likely 
include both single and multiple robot systems, as we sub- 
sequently illustrate.  In the latter regard, rover “crews” are 
expected to play important roles not only in planetary 
exploration, but also in preparing/maintaining habitats for 
robotic and teamed human/robotic presence [13, 14].   

Increased rover autonomy is required for long duration 
robotic presence on lunar and planetary surfaces.  This 
need is being addressed by a number of ongoing research 
programs, with emphasis on accurate, safe long-range 
autonomous navigation traverse and automated science 
instrument placement [2, 14]—functions that increase the 
science return per unit time of operations, while also 
reducing ground support requirements.  Such planetary 
rover operations have to date been in the context of low 
rock density terrains typified by Viking 1 and Mars 
nominal imagery—6-to-9% area density, and small scale 
rock outliers.  Beyond this regime, approaching Viking 2 
densities of 18 % and larger rocks, wheeled rovers of 
current scale (1 meter2 length/track) confront problems of 
trapping, mean-free path obstruction, and in absence of 
robust sensing and hazard avoidance planning, also the 
risk of mission catastrophic  upsets (by both positive and 
“negative” obstacles, that is, surface depressions).  Thus, 
there is motivation to not only map and locally plan [2, 
and references therein] for obstacle avoidance, but also to 
enhance rover traverse capability by mechanical and 
sensory-control adaptation. Desired improvements are 
both quantitative and qualitative—rovers that drive more 
robustly through more variable VL1/VL2 Mars terrain, 
and new rover systems able to access increasingly 
difficult, steeply sloped regions of science importance.  
Figure 4 gives two examples of recent note in the space 
science community; it is hoped these sites will afford a 
rich developmental history of their formative processes 
through exposed strata of highly sloped terrains. 

 
3.2. “All Terrain Explorer” Development 

Figure 5 sketches our concept and representative 
operational scenarios that motivate it. In one element of 
our technical approach [12], the rover images its forward- 
looking terrain, derives from on-board stereo a 3D terrain 
map, analyzes terrain traversability relative to predicted 
kinematic-and-quasistatic maneuverability/stability, and 
sequences compensating behaviors that optimize a rover 
performance index.  These behaviors are sequenced by a 
simple finite state machine on JPL’s Sample Return Rover,  
reposing stance and c.g.  This is done in two ways:  by 
independent articulation of the rover shoulder strut angles, 
and by repositioning of the rover top-mounted robot arm.  
Per Figures 5 and 6, the arm is a reconfigurable resource 
for use in both kinematically unconstrained and closed- 
loop fashions.  In the latter case (as yet un-implemented), 
the arm acts as a drive actuator, pivot point, or other 
element in its rover-ground interactions (“de-trapping”, 
stabilization, anchoring, etc.). 
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Figure 5: Trigger Conditions for Rover Reconfiguration  

 
We do not incorporate rover dynamics, as they are not a 

contributory factor relative to the 5-to-10 cm/sec traverses 
we are addressing.   We incorporate static friction-and-slip 
effects in the above predictive JPL algorithm, treating 
these through kinematics/quasistatics analysis referred to 
surface contact models and an idealized Coulomb friction 
model.  Complementing this predictive approach to rover 
reconfiguration, we utilize a reactive approach developed 



by MIT with JPL [6] wherein rover stability analysis is 
based on instantaneous state (engineering sensor data as 
to pose and articulation) and physically based planning.  
This technique is very computationally efficient.  We next 
briefly describe these two algorithms. 

Predictive reconfiguration:  In summary, we predict 
the future state of the rover based upon look-ahead stereo 
range imaging, on-board IMU, and any other derived state 
information that can be sensed, e.g., stall conditions, 
inferred slip from accelerometry, etc.  This information is 
used to compute a tipover-stability and slip-and-traction 
Locomotion Metric that determines feasible and approp- 
riate reconfiguration of rover geometry and center-of- 
mass.  The algorithmic procedure is [12]: 

1. Determine the surface shape of terrain ahead of the rover 

(model by appropriate spatial representation). 

2. Solve the configuration kinematics to predict rover config- 

uration on the modeled terrain, i.e. roll, pitch, yaw, internal 

angles, and wheel contact points 

3. Given a friction coefficient that characterizes wheel-ground 

interactions, determine if the span of nominal frictional and 

normal forces at the predicted contact  are sufficient to resist 

the gravity wrench (and any other disturbance forces) in both 

the nominal and re-configured kinematics/c.g. (Reconfigur- 

ation consists of independent left-right shoulder angle 

changes and center-of-gravity shifts using the manipulator). 

4. Determine the minimum coefficient of friction in Step 3.  This 

term is interpreted to be a Locomotion Metric indicative of the 

quality of the given configuration (or reconfiguration). 

 
Step 1 is implemented by stereo imaging—correlating 
Laplacian left and right images along epi-polar lines to 
establish image disparity, and consequently the range, via 
a camera model.  Step 2 is computed by means of an 
iterative Newton Solver.  Step 3 involves setting up poly- 
hedral inequality approximations to the friction cone at 
each rover contact point, and expressing as inequalities 
the unidirectional constraints on the wheel normal forces 
and the wheel torque constraints.  These linear relation- 
ships are then transformed to the vehicle frame using the 
vehicle Locomotion Matrix [12, and refs. therein]. An 
equality constraint characterizes the manifold of contact 
forces able to resist the applied wrench without regard to 

constraints.  A linear programming solution uses these 
inequality and equality constraints to determine if a feas- 
ible set of friction and normal forces exists to resist the 
applied wrench.  A binary search algorithm then computes 
the metric by determining the smallest value of friction 
coefficient sufficient to resist the applied vehicle wrench.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6:   SRR (http://prl.jpl.nasa.gov) descends a steep 
hill at the Arroyo Seco near JPL.  By comparison to opera- 
tion with fixed shoulder and arm in stowage, slope access 
stability more than doubles, from ~20+ degrees up to 50. 

Reactive reconfiguration:  We define a stability metric 
using a quasi-static model and optimize this metric  
on-line.  Our method relies on estimation of wheel-terrain 
contact angles as derived from simple on-board sensors 
alone.  As the rover moves at 5-to-6 cm/sec, we consider 
only static forces in calculating the rover stability.  System 
stability is expressed in terms of a set of “stability angles.”  
A stability angle is the angle formed between a line origin- 
ating at the center of mass and normal to the tip-over axis, 
and the gravitational (vertical) axis.  This angle goes to 
zero at marginal stability.  A performance index, Φ, is 
defined for the SRR from these stability angles γj, 
i={1,…,4}, and the reconfigurable shoulder degrees of 
freedom, ψ1 and ψ2, as Equation 2 [ 6] 
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manipulator degrees of freedom (i.e. j = γj(ψ1, ψ2, θ1, θ2, 
θ3)).  Note that the first term of Φ tends to infinity as the 
stability at any tip-over axis tends to zero.  The second 
term penalizes deviation from a nominal configuration of 
the shoulder joints, thus maintaining adequate ground 
clearance, an important consideration in rough terrain. 
The goal of this stability-based optimization problem is to 
minimize the performance index Φ subject to joint-limit 
and interference constraints.  For rapid computation, and 
due to the simple nature of Φ, we can employ a basic 
optimization technique such as conjugate-gradient search. 
Overall, the approach is computationally effective, does 
not require visual terrain knowledge, and treats gravita- 
tional versus traction issues. 

optimization technique such as conjugate-gradient search. 
Overall, the approach is computationally effective, does 
not require visual terrain knowledge, and treats gravita- 
tional versus traction issues. 

 The Cliff-bot, Figure 8, employs two anchored rover 
analogs as “anchor-bots” topside of the cliff. These 
anchor- bots fully implement the kinematics controls and 
degrees- of-freedom of the two robots they emulate.  The 
conceptual system, per Figure 7, is based in a modular 
ensemble of robots that reconfigures itself at the top of the 
cliff, first anchoring two members at the top, then sending 
a tethered robot over the cliff-edge onto the cliff-face. The 
“tether-bot” actively drives/traverses the cliff-face using 
way-point navigation, with stability being maintained by 
actively controlled tethers from the two anchor-bots.   

 The Cliff-bot, Figure 8, employs two anchored rover 
analogs as “anchor-bots” topside of the cliff. These 
anchor- bots fully implement the kinematics controls and 
degrees- of-freedom of the two robots they emulate.  The 
conceptual system, per Figure 7, is based in a modular 
ensemble of robots that reconfigures itself at the top of the 
cliff, first anchoring two members at the top, then sending 
a tethered robot over the cliff-edge onto the cliff-face. The 
“tether-bot” actively drives/traverses the cliff-face using 
way-point navigation, with stability being maintained by 
actively controlled tethers from the two anchor-bots.   
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3.3. “Cliff-bot” Cooperating Rover System  3.3. “Cliff-bot” Cooperating Rover System    

 Clementine and Lunar Prospector mission imagery 
indicate presence of water in the Lunar Aitken Basin at 
the south lunar pole.  Mars Odyssey orbital imagery infer 
recent, possibly active water outflows in steeply cratered 
regions.  There is thus very strong motivation to develop 
planetary mobility systems that can access designated 
science targets on cliff-like slopes, per Figure 7, a topic 
for which JPL has developed a recent technical proof of 
concept around a cooperating multi-robot system. We 
briefly overview our approach, as described in more detail 
elsewhere [3, 4, 9 and references therein].  In Section 4, 
we overview more recent related MIT/JPL work on fused 
sensing in support of this “Cliff-bot” system concept. 
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the south lunar pole.  Mars Odyssey orbital imagery infer 
recent, possibly active water outflows in steeply cratered 
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elsewhere [3, 4, 9 and references therein].  In Section 4, 
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Figure 8:  Cliff-bot way point navigation on a cliff face 
via active tether-bot driving and cooperative tether control 
with two topside two anchor-bots 

Figure 8:  Cliff-bot way point navigation on a cliff face 
via active tether-bot driving and cooperative tether control 
with two topside two anchor-bots 
  

The Cliff-bot system is implemented in JPL’s recently 
developed CAMPOUT architecture, per Figure 9. 

The Cliff-bot system is implemented in JPL’s recently 
developed CAMPOUT architecture, per Figure 9. 
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  Figure 7:  Concept—multiple, modular, cooperative and 

re-taskable robots reconfigure and tightly coordinate their 
sensing and control in a cliff descent for scientific analysis 
of exposed stratigraphy (geo-morphology, bio-chemistry) 

Figure 7:  Concept—multiple, modular, cooperative and 
re-taskable robots reconfigure and tightly coordinate their 
sensing and control in a cliff descent for scientific analysis 
of exposed stratigraphy (geo-morphology, bio-chemistry) 

Figure 9:  JPL CAMPOUT high-level organization for 
collective sensing and tightly coordinated control within 
extensible multi-robot networks [4, 10, 11] 

Figure 9:  JPL CAMPOUT high-level organization for 
collective sensing and tightly coordinated control within 
extensible multi-robot networks [4, 10, 11] 
  



4.1. MITSAF Algorithm and Implementation Within space limitations, we sketch Cliff-bot control 
per a behavior network shown for one of the anchor-bots 
in Figure 10.  See reference [4] for more detail.  Behavior 
composition of Cliff-bot within CAMPOUT employs a 
priority weighting of four primary behaviors:  Stability, 
Maintain Tension, Match Velocity, and Haul.  Stability is 
given the highest priority, as it minimizes the risk of rover 
tip-over; Maintain Tension keeps constant tension on the 
tethers; Match Velocity controls tether playout rates to 
match those of the active agent on the cliff face; and Haul 
gives the active agent a pull if it has insufficient torque to 
get moving at the start of a traverse. All state data is 
shared between the modules by means of a publish-and- 
subscribe communication protocol. 

Sujan [16] recently developed an algorithm that fuses 
sensory information from multiple robotic agents. His  
approach exploits physical sensor, robot, and environ- 
mental models to yield geometrically consistent surrogate 
information in lieu of missing data (thereby reducing 
uncertainty in the overall system state).  A central concept 
within the algorithm is sensor planning: efficient and 
iterative re-positioning of sensors using an information 
theoretic optimizing criteria.  Thus sensor positions are 
planned to help fill in uncertain/ unknown regions of the 
environment model.  Sensory information obtained from 
this process is distributed to the agents.  The key idea of 
the algorithm is to build a common environment model by 
fusing the data available from the individual robots, 
providing both improved accuracy as well as knowledge 

  
    
of regions not visible by all robots.  As pertains to prior 
JPL Cliff-bot system development and demonstration [9], 
MITSAF utilizes an additional “RECON-bot” (REmote 
Cliff Observer and Navigator) that serves as a mobile 
observer/ sensing module, per Figure 11.   

  
  

    
 

   
 
 
 
 

 

 

 

Figure 10:  Subset of the behavior network for collective 
cliff-descent illustrating a sub-system for controlling the 
velocity of anchor-bot 1.  The arrows represent data links 
between local blocks as well as remote components (e.g., 
behaviors, sensors, actuators) 
 
Utilizing the general scheme above, we have successfully 
used Cliff-bot to traverse rocky soil inclines of 55-to-80 
degree slope.  In the absence of stabilizing tether control, 
including detection of tether obstruction, the deployed 
cliff rover is often unstable at inclines < 25 degrees (note 
that the tether-bot is operated here as a fixed configuration 
vehicle, unlike the All Terrain Explorer of Section 3.2). 
 

4. Cliff-bot Perception & State Estimation 
The prior Cliff-bot discussions did not address the issue 

of perception—the development of a fused state estimate 
of the external/internal environment to explicitly support 
navigation and planning of the tether-bot.   Here we do so. 
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Figure 11:  Cooperative cliff descent system, consisting 
of two anchor-bots, cliff-bot, and a RECON-bot, the last 
of which surveys cliff face from the top edge, and passes 
the path for a chosen goal to the tether-bot 
 
The four robots are equipped with a limited sensor suite, 
computational power and communication bandwidths. 
The tether-bot—which in actual planetary science 
practice would serve primarily to transport and position a 
science payload—has minimal resources for navigation 
beyond the essential.  By complement, the RECON-bot 
observes the global environment traversable by the tether- 
bot and communicates to it key navigational data.  While 
tether-bot can carry cameras and other onboard sensors 



for local observations, its independent sensor view space, 
sensor placement, self-localization and navigational 
planning are severely constrained by surrounding rocks, 
larger outcroppings, etc.  Further, there is significant task 
uncertainty in relative pose between the multiple robots 
and the environment model.  Given these limitations and 
underlying uncertainties, classical robot control and 
planning techniques break down.  In essence, it is difficult 
or impossible to directly measure the environment model 
required for the control of interacting cooperative mobile 
field robots.  The new MITSAF (Model-based Infor- 
mation Theoretic Sensing And Fusion) algorithm 
addresses the preceding issues as follows: 
 
1. System initialization: This step involves initializing the 
environment map, localizing robots, and generating a first 
map.  Here, we map the environment to a 2.5D elevation 
grid,  i.e. each grid cell value represents the average eleva- 
tion at that cell.  Next, robots contributing to or requiring 
use of the environment model are localized with respect to 
the initial environment map.  Finally, initial environment 
sensing is performed. 

2. Critical terrain feature identification: In several 
applications, certain regions in the terrain may be task 
critical and require prior identification/modeling. For 
example, unique to this application, the cliff edge requires 
identification by the RECON-bot. This edge is param- 
eterized by the edge of a best-fit non-convex polygon of 
the local terrain.  This permits the RECON-bot to traverse 
a geometrically complex cliff edge without falling over 
while not committing large memory/processing time 
resources. 

3.  Optimum information gathering pose selection: The 
planner selects new vision sensor positions for the agents 
contributing sensory data to the environment model.  In 
this application this is limited to the RECON-bot.  A 
rating function is used to determine the next pose of the 
camera from which to look at the unknown environment.  
The aim is to acquire the maximum new information of 
the environment that would lead to a more complete 
environment map.  Specifically, the new information (H, 
to be next discussed) is equal to the expected information 
of the unknown/partially known region viewed from the 
camera pose under consideration.  This is based on known 
obstacles from the current environment model, the field of 

view of the camera and a framework for quantifying 
information.   Shannon [15] has shown that the infor- 
mation gained by observing a specific event among an 
ensemble of possible events may be described as follows: 

( ) ∑
=

−=
n

k
kkn qqqqqH

1
221 log,...,,          (3) 

where qk represents the probability of occurrence for the 
kth event. This definition of information may also be 
interpreted as the minimum number of states (bits) needed 
to fully describe a piece of data.   Shannon’s emphasis was 
in describing the information content of 1-D signals.   As 
shown before, it is possible to extend this formulation of 
information to a generalized 3-D signal [16].  As reported 
here, the idea is in fact applied to a 2.5D signal—the 
environment elevation map.  The new information content 
for a given camera view pose is given by: 
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where H is summed over all grid cells, i, visible from 

camera pose camx,y,z,θp,θy; is the number of 

environment points measured and mapped to cell i; 

is the maximum allowable mappings to cell i; and 

is the probability of visibility of cell i from the camera 

test pose.  The above formal definition of information 
behaves in an intuitively correct way: Regions with higher 
visibility and /or  a higher level of associated unknowns 
yield a higher expected information value.  Conversely, 
areas of higher occlusion or better known regions result in 
lower expected information values. 

i
gridn
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VP

4. Model distribution: As the environment model is 
developed it needs to be distributed among the agents so 
that optimum sensor placement planning may continue.  
The environment model distribution is also required for 
task execution.  For example, after the RECON-bot has 
developed the geometrical cliff surface model, it needs to 



We conducted our experimental tests in the Planetary 
Robotics Laboratory (PRL) at JPL, http://prl.jpl.nasa.gov 
and in the field at a cliff-site near the Tujunga Dam in 
Tujunga, CA.  We show the experimental set-up for lab 
study in Figure 12, wherein the Sample Return Rover 
(SRR, a JPL technology prototype (as earlier described in 
its Section 3 role as the “All Terrain Explorer”, acts as the 
RECON-bot.  The SRR is a four-wheeled mobile robot 
with independently steered wheels and independently 
controlled shoulder joints;  SRR carries stereo cameras  
(15cm baseline, the individual cameras having a 45º 
field-of-view) mounted on its four degree-of-freedom 
manipulator, which also functions as a steerable mast.  As 
applies to this study, SRR computing includes a 266 MHz 
Pentium II processor in a PC-104+ stack that operates 
under the real-time OS VxWorks5.4.  We implemented 
five mapping techniques with increasing levels of sophis- 
tication, per Figure 13:   raster scanning without yaw, 
raster scanning with yaw, information-based environment 
mapping with the cliff edge assumed to be a straight line 
segment, information-based environment mapping with 
the cliff edge approximated as a non-convex polygon, and  
information-based environment mapping with interest 
function and cliff edge approximated as a non-convex 
polygon.  The first two methods reflect common environ- 
ment mapping schemes. The latter three methods reflect, 
with increasing model and computational complexity, the 
MITSAF algorithm.  Laboratory and field tests (Figures 
12 and 11) both confirm the effectiveness of MITSAF. 

transfer this data to the Cliff-bot for the latter’s science 
instrument placement/observational positioning function.  
We have developed a data transfer procedure that reflects 
practical inter-rover communication bandwidth limits.  
The underlying data reduction algorithm breaks down the 
environment map (data set) into interest regions using a 
quad-tree.  This is done by first reducing the elevation 
map with adaptive decimation which removes objects 
insignificant to the Cliff-bot wheel diameter. The 
resulting data set is divided in four quads and each is 
evaluated for information content, per the criteria of 
Equations 3 and 4.  This outcome is used to determine if 
further quad-subdivision (higher resolution) is required. If 
not, then an average elevation value of the particular quad 
is used for transmission (rather than the elevation of all 
grid cells within the quad). This results in a significantly 
reduced data set.  Conventional compression schemes 
may then be applied to the reduced data set to further 
reduce the number of transmission bits. 
  
4.2. Experimental Results 

We have described JPL’s development of an integrated 
Cliff-bot perceptual system and use therein of MITSAF in 
[ 3, and refs. therein];  Cliff-bot builds on several recent 
JPL rover R&D efforts, in particular, the autonomous 
perception and navigation algorithms of FIDO rover [2, 
14].  Here, we show illustrative results of collaborative 
JPL-MIT Cliff-bot experimentation with MITSAF. 
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Figure 13:   Five lab studies of Cliff-bot environmental 
mapping, wherein the upward trend reflects increasing 
fidelity/coverage per the five listed techniques (see text) 

Figure 12:  Experimental setup in JPL PRL with SRR as a 
RECON-bot, three rock piles, and a small step edge 
(marked with dotted lines) serving as the cliff-edge 

http://prl.jpl.nasa.gov/
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